Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Nutrients ; 14(9)2022 May 02.
Article in English | MEDLINE | ID: covidwho-1820349

ABSTRACT

The coronavirus disease 2019 (COVID-19) has caused a pandemic and upheaval that health authorities and citizens around the globe are still grappling with to this day. While public health measures, vaccine development, and new therapeutics have made great strides in understanding and managing the pandemic, there has been an increasing focus on the potential roles of diet and supplementation in disease prevention and adjuvant treatment. In the literature, the impact of nutrition on other respiratory illnesses, including the common cold, pneumonia, and influenza, has been widely demonstrated in both animal and human models. However, there is much less research on the impact related to COVID-19. The present study discusses the potential uses of diets, vitamins, and supplements, including the Mediterranean diet, glutathione, zinc, and traditional Chinese medicine, in the prevention of infection and severe illness. The evidence demonstrating the efficacy of diet supplementation on infection risk, disease duration, severity, and recovery is mixed and inconsistent. More clinical trials are necessary in order to clearly demonstrate the contribution of nutrition and to guide potential therapeutic protocols.


Subject(s)
COVID-19 , Diet , Dietary Supplements , Humans , SARS-CoV-2 , Vitamins
2.
Biology (Basel) ; 10(12)2021 Dec 05.
Article in English | MEDLINE | ID: covidwho-1554903

ABSTRACT

The ongoing COVID-19 pandemic follows an unpredictable evolution, driven by both host-related factors such as mobility, vaccination status, and comorbidities and by pathogen-related ones. The pathogenicity of its causative agent, SARS-CoV-2 virus, relates to the functions of the proteins synthesized intracellularly, as guided by viral RNA. These functions are constantly altered through mutations resulting in increased virulence, infectivity, and antibody-evasion abilities. Well-characterized mutations in the spike protein, such as D614G, N439K, Δ69-70, E484K, or N501Y, are currently defining specific variants; however, some less studied mutations outside the spike region, such as p. 3691 in NSP6, p. 9659 in ORF-10, 8782C > T in ORF-1ab, or 28144T > C in ORF-8, have been proposed for altering SARS-CoV-2 virulence and pathogenicity. Therefore, in this study, we focused on A105V mutation of SARS-CoV-2 ORF7a accessory protein, which has been associated with severe COVID-19 clinical manifestation. Molecular dynamics and computational structural analyses revealed that this mutation differentially alters ORF7a dynamics, suggesting a gain-of-function role that may explain its role in the severe form of COVID-19 disease.

3.
Nutrients ; 13(8)2021 Jul 27.
Article in English | MEDLINE | ID: covidwho-1430928

ABSTRACT

Gut microbiota has emerged as a major metabolically active organ with critical functions in both health and disease. The trillions of microorganisms hosted by the gastrointestinal tract are involved in numerous physiological and metabolic processes including modulation of appetite and regulation of energy in the host spanning from periphery to the brain. Indeed, bacteria and their metabolic byproducts are working in concert with the host chemosensory signaling pathways to affect both short- and long-term ingestive behavior. Sensing of nutrients and taste by specialized G protein-coupled receptor cells is important in transmitting food-related signals, optimizing nutrition as well as in prevention and treatment of several diseases, notably obesity, diabetes and associated metabolic disorders. Further, bacteria metabolites interact with specialized receptors cells expressed by gut epithelium leading to taste and appetite response changes to nutrients. This review describes recent advances on the role of gut bacteria in taste perception and functions. It further discusses how intestinal dysbiosis characteristic of several pathological conditions may alter and modulate taste preference and food consumption via changes in taste receptor expression.


Subject(s)
Bacterial Physiological Phenomena , Gastrointestinal Microbiome/physiology , Intestines/microbiology , Taste Perception , Animals , Antineoplastic Agents/therapeutic use , Bariatric Surgery , COVID-19/physiopathology , Diet , Dysbiosis/physiopathology , Feeding Behavior , Hormones/metabolism , Humans , Inflammatory Bowel Diseases/physiopathology , Neoplasms/drug therapy , Neoplasms/physiopathology , Receptors, G-Protein-Coupled/metabolism , Taste , Taste Buds/physiology , Toll-Like Receptors/metabolism
4.
JMIRx Med ; 2(3): e28049, 2021.
Article in English | MEDLINE | ID: covidwho-1369605

ABSTRACT

BACKGROUND: The United Kingdom reported the emergence of a new and highly transmissible SARS-CoV-2 variant (B.1.1.7) that rapidly spread to other countries. The impact of this new mutation-which occurs in the S protein-on infectivity, virulence, and current vaccine effectiveness is still under evaluation. OBJECTIVE: The aim of this study is to sequence SARS-CoV-2 samples of cases in Romania to detect the B.1.1.7 variant and compare these samples with sequences submitted to GISAID. METHODS: SARS-CoV-2 samples were sequenced and amino acid substitution analysis was performed using the CoV-GLUE platform. RESULTS: We have identified the first cases of the B.1.1.7 variant in samples collected from Romanian patients, of which one was traced to the region of the United Kingdom where the new variant was originally sequenced. Mutations in nonstructural protein 3 (Nsp3; N844S and D455N) and ORF3a (L15F) were also detected, indicating common ancestry with UK strains as well as remote connections with strains from Nagasaki, Japan. CONCLUSIONS: These results indicate, for the first time, the presence and characteristics of the new variant B.1.1.7 in Romania and underscore the need for increased genomic sequencing in patients with confirmed COVID-19.

5.
Front Microbiol ; 12: 654417, 2021.
Article in English | MEDLINE | ID: covidwho-1325542

ABSTRACT

Romania officially declared its first Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) case on February 26, 2020. The first and largest coronavirus disease 2019 (COVID-19) outbreak in Romania was recorded in Suceava, North-East region of the country, and originated at the Suceava regional county hospital. Following sheltering-in-place measures, infection rates decreased, only to rise again after relaxation of measures. This study describes the spread of SARS-CoV-2 in Suceava and other parts of Romania and analyses the mutations and their association with clinical manifestation of the disease during the period of COVID-19 outbreak. Sixty-two samples were sequenced via high-throughput platform and screened for variants. For selected mutations, putative biological significance was assessed, and their effects on disease severity. Phylogenetic analysis was conducted on Romanian genomes (n = 112) and on sequences originating from Europe, United Kingdom, Africa, Asia, South, and North America (n = 876). The results indicated multiple introduction events for SARS-CoV-2 in Suceava, mainly from Italy, Spain, United Kingdom, and Russia although some sequences were also related to those from the Czechia, Belgium, and France. Most Suceava genomes contained mutations common to European lineages, such as A20268G, however, approximately 10% of samples were missing such mutations, indicating a possible different arrival route. While overall genome regions ORF1ab, S, and ORF7 were subject to most mutations, several recurring mutations such as A105V were identified, and these were mainly present in severe forms of the disease. Non-synonymous mutations, such as T987N (Thr987Asn in NSP3a domain), associated with changes in a protein responsible for decreasing viral tethering in human host were also present. Patients with diabetes and hypertension exhibited higher risk ratios (RR) of acquiring severe forms of the disease and these were mainly related to A105V mutation. This study identified the arrival routes of SARS-CoV-2 in Romania and revealed potential associations between the SARS-CoV-2 genomic organization circulating in the country and the clinical manifestation of COVID-19 disease.

SELECTION OF CITATIONS
SEARCH DETAIL